Typ3 osa

Measuring cycles for touch-trigger probes Programming manual

Edition

Typ3 osa

Measuring cycles for touch-trigger probes Programming manual

1070 073 789-101 (98.09) GB

Reg. Nr. 16149-03

© 1998

by Robert Bosch GmbH, Erbach / Germany All rights reserved, including applications for protective rights. Reproduction or handing over to third parties are subject to our written permission.

Contents

Pa	30	ie
	×9	

V

1 1.1	Safety Instructions Proper use	1–1
1.2	Qualified personnel	1–2
1.3	Safety markings on components	1–3
1.4	Safety instructions in this manual	1-4
1.5 1.6	Documentation, versions and trademarks	1–5 1–6
2	General	2–1
•		
3		2.4
3.1	P999999901 Probe qualification using a standard tool	3–1 3–1
	P999999902 Gauging the length of a tool	3-4
	P999999903 Gauging the radius of a tool	3–6
4	Measuring workpieces	
4.1	Measuring cycle package:	
	Measuring without variable spindle positioning	4–1
	P999999911 Qualifying probes using a reference bore	4–1
	P999999912 Qualifying probes in the longitudinal axis	4-4
	P999999913 Measuring a cylinder	4-0 4_8
	P999999915 Measuring a slot	4-10
	P999999916 Measuring a key	4–12
	P999999917 Single-point measuring / multi-point measuring	4–14
	P999999918 Two-point measurement	4–17
4.2	Measuring cycle package:	
	Measuring with variable spindle positioning	4–19
	P999999921 Qualifying probes using a reference surface	4-19
	P999999922 Qualifying probes in the longitudinal axis	4-21
	P999999924 Measuring a cylinder	4-25
	P999999925 Measuring a slot	4-27
	P999999926 Measuring a key	4–29
	P999999927 Single-point / multi-point measurement	4–31
	P999999928 Two-point measurement	4–34
5	Description of the declarations memory	5–1
6	Required storage space	<mark>6</mark> –1

1 Safety Instructions

Please read this manual before commissioning the measuring cycles for touch-trigger probes with the Typ3 osa. Store this manual in a place to which all users have access at any time.

1.1 Proper use

This manual contains all instructions required for the proper use of the control system. However, for reasons of clarity, not all the details of all possible combinations of functions could be listed, nor could each and every conceivable condition of integration or operation be covered because the control system is usually part of a major installation or system.

The Typ3 osa is used to

- activate feed drives, spindles and auxiliary axes of a machine tool via a SERCOS interface for the purpose of guiding a processing tool along a programmed path to machine a workpiece (CNC). Additionally, a PLC is required with appropriate I/O components which provides – in communication with the actual CNC – integrated control of the machine tooling process and also serves to monitor technical safety.
- program contours and the tooling technique (feedrate, spindle feed, tool change) used for a workpiece.

Any other application will be deemed improper use!

The products described

- have been developed, manufactured, tested, and documented in compliance with the relevant safety standards. These products normally pose no danger to persons or property if they are used in accordance with the handling stipulations and safety notes prescribed for their configuration, mounting, and proper operation.
- meet the requirements of
 - the EMC directive (89/336/EEC, 93/68/EEC, and 93/44/EEC)
 - the low-voltage directive (73/23/EEC)
 - the harmonized standards EN 50081-2 and EN 50082-2
- are designed for operation in industrial environments. For operation in residential environments, in trade and commercial applications and small enterprises, an individual permit of the national authority or test institution is required; in Germany, please contact the Bundesanstalt für Post und Telekommunikation or its local branch offices.

The faultless, safe functioning of the product requires proper transport, storage, erection and installation as well as careful operation.

1.2 Qualified personnel

The requirements as to qualified personnel depend on the qualification profiles described by ZVEI (central association of the electrical industry) and VDMA (association of German machine and plant builders) in: Weiterbildung in der Automatisierungstechnik edited by: ZVEI and VDMA MaschinenbauVerlag Postfach 71 08 64 D-60498 Frankfurt

This instruction manual has been designed specifically for CNC programmers. They require special skills in cycle programming.

Specifically trained expert personnel only may program, start or operate this system, or change its program parameters! This personnel must be able to recognize potential hazards that may be caused by programming, program modifications and generally by mechanical, electrical, or electronic equipment.

Any intervention in the hardware and software of our products, unless described otherwise in this manual, is reserved to our specialized personnel.

Tampering with the hardware or software, ignoring warning signs attached to the components, or non-compliance with the warning notes given in this manual may result in serious bodily injury or property damage.

Only **electrotechnicians** as recognized under VDE 1000-10 who are familiar with the contents of this manual may install and service the products described in this manual.

Such personnel are

- individuals who, being well trained and experienced in their technical fields and familiar with the relevant standards, are able to understand the jobs being carried out and recognize any potential hazards.
- individuals who have acquired the same amount of expert knowledge through years of experience that would normally be acquired through formal technical training.

Please note our comprehensive range of training courses. Our training center will be pleased to provide you with further information, telephone: +49 (0)6062 78-258.

1.3 Safety markings on components

1.4 Safety instructions in this manual

4	

DANGEROUS ELECTRICAL VOLTAGE

This symbol is used to warn of a **dangerous electrical voltage**. Failure to observe the instructions in this manual in whole or in part may result in **personal injuries**.

DANGER

This symbol is used if failure to observe the instructions in this manual in whole or in part may result in **personal injury**.

CAUTION

This symbol is used if failure to observe the instructions in this manual in whole or in part may result in **damage to equipment or data files**

I This symbol is used to draw the user's attention to special information.

1.5 Safety instructions for the described product

DANGER Danger to life if EMERGENCY-STOP devices are inadequate! EMERGENCY-STOP devices must be active and within reach in all system modes. Releasing an EMERGENCY-STOP device must not result in an uncontrolled system restart! First check the EMER- GENCY-STOP circuit, then switch the system on.
DANGER Danger of personal injuries and damage to equipment ! First, new programs must be tested carefully without axis move- ment. For this purpose, the control system offers the possibility of blocking axis movement and/or auxiliary function outputs by ap- propriate softkeys in the AUTOMATIC group mode.
DANGER Moving tools or axes may cause serious or fatal injuries!
Feed and spindle motors generate very powerful mechanical forces and can accelerate very quickly due to their high dynamics. You should therefore always stay outside the danger area of the machine when it is running!
Do not ever – not even briefly – deactivate the safety-relevant func- tions of the unit!
Report any malfunction of the unit to your servicing and repairs de- partment immediately.
Inappropriate working clothes may cause serious or fatal injuries! Careless operators' hair or clothing may get caught by moving parts of machines, pulling operators into the machine! Therefore:
 wear a nair net! Wear a protective suit!
 Take off protective gloves before working near moving parts!
 Take off any jewelry and wristwatches!
Remember that drillings, borings, etc. may be cast out during opera- tion of the machine! They can cause eye injuries and burns. Therefore:
Wear protective goggles!
Wear a protective suit !
There is also a risk of injury from sharp edges on the workpieces and tools! Therefore:
Wear protective gloves!

1.6 Documentation, versions and trademarks

Documentation

The present manual provides information on the programming of measuring cycles.

Overview of available manuals:

Manual title	Part no.			
	German	English		
Connection Conditions Information on project planning and mainte- nance	1070 073 704	1070 073 736		
Operating Instructions Standard operator interface	1070 073 726	1070 073 739		
Diagnostics Operating Instructions	1070 073 779	1070 073 780		
Programming Instructions DIN Programming in accordance with DIN 66025	1070 073 725	1070 073 738		
Programming Instructions CPL	1070 073 727	1070 073 740		
System Description ICL700 Program structure of the integrated PLC	1070 073 706	1070 073 737		
Project Planning Manual ICL700 Software interfaces and CNC interface signals of the integrated PLC	1070 073 728	1070 073 741		
MACODA Operation and configuration of all machine pa- rameters	1070 073 705	1070 073 742		
Tool Management Parameter Setting	1070 073 782	_		
Measuring Cycles for Touch-Trigger Switching Probes	1070 073 788	1070 073 789		

★ This symbol indicates the description of an activity to be performed by the user.

Version

- If This description refers to version:Software:4.3
- IF You can check the current version numbers of your individual software modules by hitting the "Control Diagnostic" softkey in the "Diagnostics" group mode.
- **□** For more information on your Windows 95 or Windows NT software version, select the "My Computer" icon on the start screen and then the HELP function in the "About Windows 95" or "About Windows NT" submenus.

Trademarks

All trademarks of software pre-installed on Bosch products when delivered are the property of the respective manufacturers.

Any and all pre-installed software delivered with Bosch products is protected by copyright and may not be reproduced without the permission of Bosch or subject to the license agreements of the respective manufacturers.

MS-DOS[®] and Windows[™] are registered trademarks of Microsoft Corp.

SERCOS interface $^{\odot}$ is a registered trademark of Interessengemeinschaft SERCOS interface e. V.

2 General

The measuring cycles of the Typ3 osa control fall into two categories:

- tool gauging and
- workpiece measuring.

For **tool gauging**, a permanently installed probe must be available in the working area of the machine. The tool to be gauged is mounted in the spindle during the measuring process.

For **workpiece measurement**, the probe is fitted in the spindle. The type of probe used may be one that takes all points to be measured with a fixed spindle position.

The measuring cycles, however, also permit measuring with variable spindle positions. This makes it possible to measure a bore by taking three test points. For tool gauging, the measuring cycles allow for two different probes to be used on one machine. Also for workpiece measuring, 2 different probes can be used. The data for probe 1 is stored in declarations memory K99, the data for probe 2 in declarations memory K100. K99 and K100 are actually geometric offset tables originally not intended for this purpose.

Prerequisites

The following prerequisites must be met for all measuring cycles:

- The probe must be fitted in the spindle (only for measuring workpiece features).
- The probe electronics must be switched on.
- The spindle must be aligned (not if variable spindle positioning is used).
- Signal transmission must be live.
- The axes must positioned so that the contact points can be approached.
- Cutter compensation, scaling, part rotation, paraxial compensation G43/44 and inch system programming must be deactivated.
- The data pertaining to a measuring cycle must be available in the declarations memory.
- Datum offset or length compensation may remain active.

Interface, PLC program and machine parameters

- It must be defined in the machine parameter program (P100100011) whether the probe shall send an L → H or an H → L edge to the Typ3 osa when contacting a test point.
- It is advisable also to have the switching signal of the touch-trigger probe sent to the PLC. This permits initiation of an EMERGENCY OFF if the probe is deflected while no measuring cycle is running.
- The PLC program must send a HIGH signal to the Typ3 osa whenever BLOCK SEARCH or TEST WITHOUT MOVEMENT are active (see description of the declarations memory H1, Chapter 5).
- When a probe deflection is expected in the measuring cycle, the output as defined under H2 in the declarations memory is set to HIGH.
- If axis positions ≥ 1,000 mm are to be saved in the declarations memory, this must be taken into account when entering the machine parameters.
- The following safety control function must become active approx. 2 seconds after the probe electronics are switched on:
 - Initiation of an EMERGENCY OFF whenever the probe is deflected (leading edge) although the Typ3 osa control is not sending an interface signal indicating that a probe deflection is expected.
- When the probe electronics are active, the stationary spindle method must be permitted if required.
- After each measuring cycle, absolute programming G90 and linear interpolation G1 are active.
 When working area limitation is active, the specified end point must lie within these limits during a measuring cycle.

Error messages are displayed as plain text messages.

3 Tool gauging

3.1 Measuring cycle package: Tool gauging

P999999901

Probe qualification using a standard tool

As a prerequisite for tool gauging, a permanently installed probe must be available in the working area of the machine.

★ To **qualify this probe**, a standard tool of known radius and length compensation values is fitted in the spindle. The probe path with its axis and direction as well as the probe position are stored in the declarations memory and are thus available for future gauging of tool lengths and radii. Upon completion of the probe qualifying cycle, the exact trigger point of the probe is available.

Prerequisites:

The standard tool must be fitted in the spindle and the respective length and radius compensation must be active.

Procedure:

Probe qualification in the longitudinal axis

- 1. Setting the longitudinal axis to home position.
- 2. Setting the axes defined under H13/H15 to contacting position.
- 3. Contacting in the longitudinal axis.
- 4. Resetting the longitudinal axis to home position.
- 5. Setting the radial axis to home position.
- 6. Setting the axis defined under H19/H21 to contacting position.
- 7. Contacting in the radial axis.
- 8. Resetting the radial axis to home position.

Geometry

Input parameters		
	P1	 1 - Probe qualification in the longitudinal axis 2 - Probe qualification in the radial axis 3 - Probe qualification in the longitudinal and radial axes
	P2	Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)
Declarations memory data used	For a	detailed description of the declarations memory, see Chapter 5.
	H4	Standard too clearance from the probe upon G75 activation
	H5	Overtravel
	H6	Positioning feed
	H7	Contacting feed
	H11	Selection of the longitudinal probe axis, incl. sign to indicate the con- tacting direction
	H12	Position of the probe installed on the machine in the longitudinal axis
	H13	Axis number 1. Positioning axis for contacting in the longitudinal axis
	H14	Position of the axis as defined under H13
	H15	Axis number 2. Positioning axis for contacting in the longitudinal axis
	H16	Position of the axis as defined under H15
	H17	Selection of the radial probe axis, incl. sign to indicate the contacting direction
	H18	Position of the probe installed on the machine in the radial axis
	H19	Axis number 1. Positioning axis for contacting in the radial axis
	H20	Position of the axis as defined under H19
	H21	Axis number 2. Positioning axis for contacting in the radial axis
	H22	Position of the axis as defined under H21
Result parameters		
-	Upon probe	completion of this measuring cycle, the exact switching position of the is transferred to the declarations memory:
	H12	Exact position in the longitudinal axis
	H18	Exact position in the radial axis

Example

CPL call: N100G22P999999901 [3]

declarations memory	H4	– Z	20.000	
	H5	– Z	10.000	
	H6	– Z	5000.000	
	H7	– Z	500.000	
	H11	– Z	-3.000	
	H12	– Z	-300.000	
	H13	– Z	1.000	
	H14	– Z	150.000	
	H15	– Z	2.000	
	H16	– Z	-55.000	
	H17	– Z	1.000	
	H18	– Z	130.000	
	H19	– Z	3.000	
	H20	– Z	-305.000	
	H21	– Z	2.000	
	H22	– Z	-55.000	

Procedure under this CPL call:

- 1. Setting the Z-axis to Z -280.000 (H12 + H4) (-300.000+ 20.000)
- 2. Positioning to X 130.000 Y-55.000
- 3. Contacting in the Z-axis in negative direction (setting: -310.000)
- 4. Setting the Z-axis to Z -280.000
- 5. Setting the X-axis to X 110.000 (130.000-20.000)
- 6. Positioning to Y -55.000 Z -305.000
- 7. Contacting in the X-axis in positive direction (setting: X 140.000)
- 8. Setting the X-axis to X 110.000

Gauging the length of a tool

This cycle serves to determine the length of the tool fitted in the spindle. The number of the longitudinal axis and the position of the probe installed in the machine working area are taken from the declarations memory. An offset value in the plane can be entered in order to align the cutting edge of the tool with the probe.

Prerequisite:

The probe must have been qualified with program P999999901.

Procedure:

- 1. Setting the longitudinal axis to home position
- 2. Positioning the axes as defined under H13/H15 to contacting position
- 3. Contacting in the longitudinal axis
- 4. Setting the longitudinal axis to home position

Input parameters

- P1 Offset for contacting in the longitudinal axis
- P2 Offset for contacting in the axis as defined under H13
- P3 Offset for contacting in the axis as defined under H15
- P4 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)

□ If no values are entered for P1 ... P3, the offset is 0.

Declarations memory data used

H1, H2, H4, H5, H6, H7, H11 – H16.

Geometry

Result parameters	
	Upon completion of this measuring cycle, the result is available for further processing as global variables as well as in the declarations memory K99. Subsequently, an evaluation program (e.g. P999999933, P999999935 or P999999936) must be called up in order to calculate the length compensation, if any.
	H46 – #ZKORR – Measured value of tool length compensation
	H35 – #PNR% – Number of the measuring program
E]	² Length compensation H, which was active prior to this measuring cycle, must be reactivated after completion of a measuring cycle.
Example	
	CPL call: N100G22P99999902

Gauging the radius of a tool

This cycle serves to determine the radius of a tool fitted in the spindle. Offset values can be entered for all axes involved in order to align the cutting edge of the tool with the probe.

Prerequisite:

The probe must have been qualified with program P999999901.

Procedure:

- 1. Setting the radial axis to home position
- 2. Setting the axes as defined under H19/H21 to contacting position
- 3. Contacting in the radial axis
- 4. Resetting the radial axis to home position

Input parameters

- P1 Offset for contacting in the radial axis
- P2 Offset for contacting in the axis as defined under H19
- P3 Offset for contacting in the axis as defined under H21
- Ρ4 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)
- If no values are entered for P1 ... P3, the offset is 0.

F Declarations memory data used H1, H2, H4, H5, H6, H7, H17 – H22. **Result parameters** Upon completion of this measuring cycle, the result is available for further processing as global variables as well as in the declarations memory K99. Subsequently, an evaluation program (e.g. P999999934, P999999935 or P999999936) must be called up in order to calculate the radius compensation, if any. H46 – #XKORR - Measured value of tool radius compensation H35 – #PNR% - Number of the measuring program Example CPL call: N100G22P99999903[-20,,,2]

Geometry

4 Measuring workpieces

4.1	Measuring cycle package: Measuring without variable spindle positioning

P999999911 Qualifying probes using a reference bore

This measuring cycle serves to determines the exact trigger points in the plane of a probe fitted in the spindle.

A probe requires different, yet constant paths for switching in the X–, X+, Y–, Y+ directions. Although deflection up to the trigger point is different in each direction, reproducibility is nevertheless very high.

In order to obtain the most accurate results possible, the trigger points of a probe must be qualified from time to time or prior to carrying out high-accuracy measurements. The probe qualifying cycle must be run in the same axis and direction used later for workpiece measuring.

For probe qualification, a reference bore aligned with the spindle must be available on the machine. Both the exact position of this reference bore and its diameter must be known.

If a fixed reference bore attached on the machine is used, its data may be stored permanently in the declarations memory. If instead a reference bore on a workpiece is used, its position data and diameter may be transferred when the measuring cycle is called up.

Upon completion of the probe qualification run, a dimensional deviation (compensation value) is stored in the declarations memory. This compensation value is taken into account in subsequent measuring cycles.

This value will compensate for the following probe characteristics:

- Positional deviation of the probe tip from the center point of spindle rotation
- Diameter of the probe tip
- Trigger points of the probe

Geometry

Procedure:

- 1. Setting the two axes (D13 + D15) in the center of the bore
- 2. Setting the longitudinal axis so as to pass through the bore
- 3.-6. Determination of center point deviation
- 7. Positioning the probe tip in the center of the reference bore
- 8.-11. Determination of the trigger points
- 12. Resetting the longitudinal axis to home position

Input parameters

- P1 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)
- P2 Position of the reference bore in the 1st axis of the plane. This entry is not mandatory. However, if a value is entered, it is registered against the current datum offset and the result is stored in the declarations memory (D14) as the new position on the machine. This new position is then used in the probe qualifying cycle.
- P3 Position of the reference bore in the 2nd axis of the plane. Same effect as P2. New machine position stored under D16 in the declarations memory.
- P4 Position of the reference bore in the longitudinal axis. Same effect as P2. New machine position stored under D12 in the declarations memory.
- P5 Diameter of the reference bore. This entry is not mandatory. However, if a value is entered, it is stored as the new diameter under D17 in the declarations memory.

Declarations memory data used

- H1 IF input Test/Block Search
- H2 IF output for G75
- H5 Overtravel for G75
- H6 Positioning feed
- H7 Contacting feed
- H32 Probe length contacting in the plane
- D11 Definition of the longitudinal axis
- D12 Position of D11 (not applicable if P4 has been entered)
- D13 Definition of the 1st axis in the plane

	D14	Exact position of D13 (not applicable if P2 has been entered)
	D15	Definition of the 2nd axis in the plane
	D16	Exact position of D15 (not applicable if P3 has been entered)
	D17	Exact diameter of the reference bore (not applicable if P5 has been entered)
Result parameters		
	The fo	ollowing measured values are committed to the declarations memory:
	D1	Positional deviation of the probe in the plane (1st axis). For subsequent measurements, the position of this axis (D13) is offset by the deviation value determined as described above before the ac- tual measuring cycle starts so as to ensure that the measurements are taken exactly at the required point.
	D2	Positional deviation of the probe in the plane (2nd axis) (see D1)
	D3	Lobing in positive approach direction in the 1st axis (D13). To obtain exact results in subsequent measurements, points taken are offset by this lobing value after completion of measuring cycles.
	D4	Lobing in negative approach direction in the 1st axis (D13)
	D5	Lobing in positive approach direction in the 2nd axis (D15)
	D6	Lobing in negative approach direction in the 2nd axis (D15)
	D12	If P4 has been entered, D12 is updated
	D14	If P2 has been entered, D14 is updated
	D16	If P3 has been entered, D16 is updated
	D17	If P5 has been entered, D17 is updated

Example

CPL call: N100G22P999999911

declarations memory	H32	– Z	150.000	
	D11	– X	3.000	
	D12	– X	-530.000	
	D13	– X	1.000	
	D14	– X	155.300	
	D15	– X	2.000	
	D16	– X	200.501	
	D17	– X	25.500	

Procedure under this CPL call:

- 1. Setting the X-axis to the fixed machine position 155.3 mm and the Y-axis to 200.501 mm.
- 2. Setting the Z-axis to -380 mm (-530 + 150 mm)
- 3. Bore measuring
- 4. Resetting the Z-axis to home position

Qualifying probes in the longitudinal axis

This measuring cycle serves to determine the exact trigger point of the probe in the longitudinal axis. A reference surface of known position within the machine working area is required for this probe qualifying cycle.

The exact probe length determined is committed to the declarations memory for subsequent measuring cycles.

Geometry

Procedure:

- 1. Setting the longitudinal axis with a clearance in front of the reference surface
- 2. Setting the axes as defined under D22 and D24 in front of the reference surface
- 3. Contacting the reference surface
- 4. Resetting to position 1

Input parameters

- P1 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)
- P2 Probe qualifying position in the 1st axis in the plane. This entry is not mandatory. However, if a value is entered, it is registered against the current datum offset and the result is stored in the declarations memory D23 as the new position on the machine. This new position is then used in the probe qualifying cycle.
- P3 Same effect as P2. The new position is stored under D25 in the declarations memory.
- P4 Same effect as P2. The new position is stored under D 21 in the declarations memory.

Declarations memory data used

- H1 IF input Test/Block Search
- H2 IF output for G75
- H4 Clearance for G75
- H5 Overtravel for G75
- H6 Positioning feed

- H7 Contacting feed
- D7 Min. probe length
- D8 Max. probe length
- D20 Definition of the longitudinal axis (Sign indicates the contacting direction)
- D21 Exact position of the axis as defined under D20 (not applicable if P4 has been entered)
- D22 Definition of the 1st axis in the plane
- D23 Position as defined under D22 (not applicable if P2 has been entered)
- D24 Definition of the 2nd axis in the plane
- D25 Position as defined under D24 (not applicable if P3 has been entered)

Result parameters

H33 Qualified probe length

The measured results are committed to the declarations memory:

- D21 If P4 has been entered, D21 is updated
- D23 If P2 has been entered, D23 is updated
- D25 If P3 has been entered, D25 is updated

Example

CPL call: N100G22P999999912[2]

		-	10.000	
declarations memory	H4	– Z	10.000	
	D8	– X	160.000	
	D20	– X	-3.000	
	D21	– X	-780.000	
	D22	– X	1.000	
	D23	– X	250.000	
	D24	– X	2.000	
	D25	– X	-290.000	

Procedure under this CPL call:

- 1. Setting the 3rd axis to the fixed machine position -510 mm (D21 + D8 + H4 = -780 mm + 160 mm + 10 mm)
- 2. Setting the 1st axis to position 250 mm and the 2nd axis to position $-290 \mbox{ mm}$
- 3. Contacting the reference position
- 4. Resetting the 3rd axis to position -510 mm

Measuring a bore

This cycle serves to determine the center point and the diameter of a bore.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Prerequisites:

- The programming plane in which the bore to be measured is located must be active (G17, G18, G19, or G20).
- The probe must be positioned so that the center of the spindle is in line with the setpoint center of the bore.
- The probe must have been qualified with program P999999911.

Procedure:

- 1. Setting the longitudinal axis so as to pass through the bore
- 2. Contacting in the 2nd axis in positive direction
- 3. Contacting in the 2nd axis in negative direction
- 4. Positioning the probe tip in the center of the bore
- 5. Contacting in the 1st axis in positive direction
- 6. Contacting in the 1st axis in negative direction
- 7. Resetting the longitudinal axis to home position

Input parameters

- P1 Measuring position of the bore in the longitudinal axis relative to program datum
- P2 Setpoint diameter of the bore
- P3 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)

Declarations memory data used

H1, H2, H4, H5, H6, H7, D1 – D6, D11, D13, D15.

Result parameters

H38 – #SPOSMP1	Setpoint position of the center of the 1st axis (D13)
H41 – #SPOSMP2	Setpoint position of the center of the 2nd axis (D15)
H44 – #SDURCHM	Setpoint diameter of the bore
H39 – #IPOSMP1	Actual position of the center of the 1st axis
H42 – #IPOSMP2	Actual position of the center of the 2nd axis
H45 – #IDURCHM	Actual diameter of the bore
H40 – #DPOSMP1	Positional deviation (difference), 1st axis (setpoint – actual)
H43 – #DPOSMP2	Positional deviation (difference), 2nd axis (setpoint – actual)
H46 – #DDURCHM	Difference in diameter
H35 – #PNR%	Program number of the measuring cycle. The program number must be specified for the sub- sequent evaluation cycle to recognize where the data originated.
H36 – #AX1%	Axis number of the 1st axis (D13)
H37 – #AX2%	Axis number of the 2nd axis (D15)

Example

CPL call: N100G22P999999913[-290,30.4]

Geometry

Measuring a cylinder

This cycle serves to determine the center point and the diameter of a cylinder.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Prerequisites:

- The programming plane in which the bore to be measured is located must be active (G17, G18, G19, or G20).
- The probe must be positioned so that the center point of the spindle is in line with the setpoint center of the bore.
- The probe must have been qualified with program P999999911.

Procedure:

- 1. Setting to contacting position. The clearance in the plane is the value as defined under H4 in the declarations memory
- 2. Setting the longitudinal axis in the measuring plane
- 3. Contacting in the 2nd axis in negative direction
- 4. Resetting the longitudinal axis for being moved to the 2nd contacting position
- 6. Setting to 2nd contacting position
- 10. Setting to 3rd contacting position
- 14. Setting to 4th contacting position
- 17. Resetting to home position

Input parameters			
	P1 Measuring position of the cylinder in the longitudinal axis relative to program datum		
	P2 Setpoint diameter of the cylinder		
	P3 Incremental return path (incl. sign) in order to approach the next point to be taken		
	P4	Selection of pro matically.)	be 1 or 2 (If no entry is made, probe 1 is selected auto-
Declarations memory data used	H1, H2, H4, H5, H6, H7, D1 – D6, D11, D13, D15		
Result parameters			
	H38 –	#SPOSMP1	Setpoint position of the center of the 1st axis (D13)
	H41 –	#SPOSMP2	Setpoint position of the center of the 2nd axis (D15)
	H44 – #SDURCHM		Setpoint diameter of the bore
	H39 – #IPOSMP1		Actual position of the center of the 1st axis
	H42 –	#IPOSMP2	Actual position of the center of the 2nd axis
	H45 –	#IDURCHM	Actual diameter of the bore
	H40 –	#DPOSMP1	Positional deviation (difference), 1st axis (setpoint – actual)
	H43 –	#DPOSMP2	Positional deviation (difference), 2nd axis (setpoint – actual)
	H46 –	#DDURCHM	Difference in diameter
	H35 –	#PNR%	Program number of the measuring cycle. The program number must be specified for the sub- sequent evaluation cycle to recognize where the data originated.
	H36 –	#AX1%	Axis number of the 1st axis (D13)
	H37 –	#AX2%	Axis number of the 2nd axis (D15)
Example			
-	CPL c	all: N100G22F	9999999914[-630,5,200,-20,2]

Measuring a slot

This cycle serves to determine the position and the width of a paraxial slot.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Geometry

Prerequisites:

- The probe must be positioned so that the center point of the spindle is in line with the setpoint center of the slot.
- The probe must have been qualified with program P999999911.
- The measuring axis must be an axis of the respective reference bore.

Procedure:

- 1. Setting the longitudinal axis in the slot
- 2. Contacting the slot in positive direction in the axis defined in the CPL call
- 3. Contacting the slot in negative direction
- 4. Resetting the longitudinal axis to home position

Input parameters

P1	Measuring position of the slot in the longitudinal axis relative to pro-
	gram datum

- P2 Setpoint width of the slot
- P3 Axis number of the measuring axis
- P4 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)

Declarations memory data used

H1, H2, H4, H5, H6, H7, D1 – D6, D11, D13, D15.

Result parameters

H38 – #SPOSMP	Setpoint position of the slot center
H39 – #IPOSMP	Actual position of the slot center

H40 – #DPOSMP	Positional deviation (difference) of the slot (setpoint – actual)
H44 – #SBREITE	Setpoint width of the slot
H45 – #IBREITE	Actual width of the slot
H46 – #DBREITE	Difference in slot width
H35 – #PNR%	Program number of the measuring cycle
H36 – #AX%	Axis number of the measuring axis

Example

CPL call: N100G22P999999915[-190,22,2]

Measuring a key

This cycle serves to determine the width and the position of a paraxial key.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Geometry

Prerequisites:

- The probe must be positioned so that the center point of the spindle is in line with the setpoint center of the key.
- The probe must have been qualified with program P999999911.
- The measuring axis must be an axis of the respective reference bore.

Procedure:

- 1. Moving the selected axis in positive direction to the 1st contacting position
- 2. Setting the longitudinal axis in the measuring plane
- 3. Contacting in the selected axis in negative direction
- 4. Withdrawing the longitudinal axis for moving it to the 2nd contacting position
- 5. Setting for the 2nd contacting position
- 9. Resetting to home position

Input parameters

- P1 Measuring position of the key in the longitudinal axis relative to program datum
- P2 Setpoint width of the key
- P3 Axis number of the measuring axis
- P4 Incremental withdrawal path (incl. sign) in order to approach the 2nd point to be taken
- P5 Selection of probe 1 or 2 (If no entry is made, probe 2 is selected automatically.)

Declarations memory data used

H1, H4, H5, H6, H7, D1 – D6, D11, D13, D15

Input parameters

H38 – #SPOSMP	Setpoint position of the center of the key
H39 – #IPOSMP	Actual position of the center of the key
H40 – #DPOSMP	Positional deviation (difference) of the key (setpoint – actual)
H44 – #SBREITE	Setpoint width of the key
H45 – #IBREITE	Actual width of the key
H46 – #DBREITE	Difference in key width
H35 – #PNR%	Program number of the measuring cycle
H36 – #AX%	Axis number of the measuring axis

Example

CPL call: N100G22P999999916[-1015.5,10.5,1,-15,2]

Single-point measuring / multi-point measuring

This cycle serves to determine the exact position of a surface. Measuring can be done either in the longitudinal axis or in the plane.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Geometry

Prerequisites:

- The measuring axis must be a qualified axis of the selected probe
- For measuring in the longitudinal axis, the axes in the plane must be set so as to permit direct measurement

Procedure 1:

Measuring in the plane

- Setting the longitudinal axis in front of the point to be taken. The probe length as defined under H32 is taken into account.
- Contacting the required point in positive or negative direction
- Incremental offset depending on input parameter P4 and repeated measurement(s)
- Resetting the longitudinal axis to home position

Procedure 2:

- Setting the longitudinal axis in front of the point to be taken. The clearance as defined under H4 is adjusted in accordance with the probe length stored under H33
- Contacting towards the required point
- Incremental offset depending on input parameter P4 and repeated measurement(s)
- Resetting the longitudinal axis to home position

Input parameters

- P1 Setpoint position
- P2 Axis number of the measuring axis
- P3 Position of the longitudinal axis when contacting in the plane
- P4 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)
- P5 Axis number of the axis of movement
- P6 Incremental offset per measurement
- P7 Number of measurements

Declarations memory data used

- Procedure 1: H1, H2, H4, H5, H6, H7, H32, D1–D6, D11, D13, D15
- Procedure 2: H1, H2, H4, H5, H6, H7, H33, D11, D13, D15

Result parameters

H38 – #SPOS	Setpoint position
H39 – #IPOS	Actual position In the case of multi-point measurement (P7 >1), #IPOS is the arithmetic mean of all points taken
H40 – #DPOS	Positional deviation (setpoint – actual)
H37 – #RI	Contacting direction $(1 = \text{positive}, -1 = \text{negative})$
H36 – #AX%	Axis number of the measuring axis
H35 – #PNR%	Program number of the measuring cycle

Example

CPL call: N100G22P999999917[-352.75,3]

Two-point measurement

This cycle serves to determine an angular deviation from axial parallelism by paraxial contacting of 2 points. A measured angular deviation can be used to adjust the position of a rotary axis correspondingly. Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Geometry

Prerequisites:

• The probe must have been qualified in the selected contacting direction.

Procedure:

- 1. Setting the longitudinal axis to contacting position unless the measuring cycle is run in the longitudinal axis.
- 2. Contacting the 1st position
- 3. Setting for contacting the 2nd position
- 4. Contacting the 2nd position
- 5. Resetting the longitudinal axis to home position

Input parameters

P1 Axis number of the measuring axis

- P2 Setpoint position of the 1st point to be taken
- P3 Setpoint position of the 2nd point to be taken
- P4 Axis number of the shifting axis
- P5 Distance between the points taken in the shifting axis (incl. sign)
- P6 Position of the longitudinal axis for contacting in the plane
- P7 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)

Declarations memory data used

H1, H2, H4, H5, H6, H7, H32, H33, D1 – D6, D11, D13, D15

Result parameters

H38 – #SPOS1	Setpoint position of the 1st point taken
H41 – #SPOS2	Setpoint position of the 2nd point taken
H39 – #IPOS1	Actual position of the 1st point taken

H42 – #IPOS2	Actual position of the 2nd point taken			
H40 – #DPOS1	Positional deviation of the 1st point taken (setpoint – actual)			
H43 – #DPOS2	Positional deviation of the 2nd point taken (setpoint – actual)			
H45 – #WI	Angular deviation of the 2nd position			
	#\\// _ \/TNI	#DPOS2 - #DPOS1		
#VVI = AIN		P5		
#RI	Contacting direction $(1 = \text{positive}, -1 = \text{negative})$			
H36 – #AX1%	Axis number of the measuring axis			
H37 – #AX3%	Axis number of the shifting axis			
H35 – #PNR%	Program number of the measuring cycle			

Example

CPL call: N100G22P99999918 [1,350,350,2,-170,-360]

4.2 Measuring cycle package: Measuring with variable spindle positioning

This measuring cycle package supports measuring with a probe which can be deflected in only one direction and which features omnidirectional signal transmission. Additionally, measuring in the longitudinal axis (Z-axis) is supported, depending on the design of the probe.

Solution III When using this measuring cycle package, make sure that the probe tip is aligned as precisely as possible with the rotational center of the spindle because otherwise the point taken will be off the required point.

P999999921 Qualifying probes using a reference surface

This cycle serves to determine the trigger point of a probe in contacting direction in the plane.

For this probe qualifying cycle, a reference surface is required in the machine working area which the probe will contact in one of the axes of the active plane.

This probe qualifying cycle compensates for the following errors (characteristic data) of the probe:

- Positional deviation of the probe in the measuring axis
- Lobing of the probe in contacting direction
- Diameter of the probe tip

For measuring the diameter of a bore, a pin, the width of a slot or a key, e.g., it is essential that the probe be qualified.

For determining the position of a bore, pin, slot, or key, qualification of the probe is not required with variable spindle positioning.

Geometry

Prerequisites:

- Freely variable spindle positioning
- Signal transmission from the probe must be ensured for any spindle position (omnidirectional signal transmission)

	 If the the If P 	ne value stored under D30 in the declarations memory is set to zero, longitudinal axis must first be set to the correct position. 22 and P3 have been defined, the other axis in the active plane must			
	first be set to the correct contacting position.				
	Procedure:				
	1. The spindle is set at 0 degrees from the contacting direction				
	2. If D30 \neq 0, setting of the longitudinal axis				
	 Setting of the axes as defined under D32/D34, or of the axis as defined under P2 to home position 				
	4. Contacting the reference surface				
	5. Resetting the measuring axis in front of the contacting position at the clearance as defined under H4				
	6. If D	$030 \neq 0$, setting of the longitudinal axis to home position			
Input parameters					
	P1	Selection of probe 1 or 2 (If no entry is made, probe 1 is selected auto- matically.)			
	P2	Selection of the axis for contacting in the active plane incl. sign to de- fine the contacting direction. If no entry is made for P2, the program will use the axis as defined under D32. If an entry is made for P2, also P3 must be defined. P2 will then be stored under D32 in the declara- tions memory.			
	P3	Position of the reference surface relative to the current program da- tum. If P3 is defined following an entry for P2, this position is offset against the current datum offset and the result is stored as the new machine position under D33 in the declarations memory. D34 and D35 are set to 0 in this process, i.e. no other axis (except the longitudi- nal axis) will be moved.			
Declarations memory data used					
	H1, H2	2, H4, H5, H6, H7, H32, D30 – D35, D37			
Result parameters					
	The fo	llowing measured values are committed to the declarations memory:			
	D36	Measured lobing (spindle position S0 in contacting direction)			
	D32	If an entry was made for P2, D32 is updated			
	D33	If an entry was made for P3, D33 is updated			
	D34	If entries were made for P2/P3, D34 is set to 0			
	D35	If entries were made for P2/P3, D35 is set to 0			
Example		all. N100G22P000000021			

Qualifying probes in the longitudinal axis

This measuring cycle serves to determine the exact trigger point of a probe in the longitudinal axis. For this probe qualifying cycle, a reference surface of known position in the machine working area is required.

The exact probe length determined is committed to the declarations memory for subsequent measuring cycles.

Geometry

Procedure:

- Setting the longitudinal axis at a clearance in front of the reference surface
- Setting the axes as defined under D22 and D24 in front of the reference surface
- Contacting the reference surface
- Resetting to position 1.

Input parameters

- P1 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically.)
- P2 Probe qualifying position of the 1st axis in the plane. This entry is not mandatory. However, if a position is entered, it is offset against the current datum offset and the result is stored as the new machine position under D23 in the declarations memory. This new position is then used in the probe qualifying cycle.
- P3 Same effect as P2. The new position is stored under D25 in the declarations memory.
- P4 Same effect as P2. The new position is stored under D21 in the declarations memory.

Declarations memory data used

- H1 IF input Test/Block Search
- H2 IF output for G75
- H4 Clearance for G75
- H5 Overtravel for G75
- H6 Positioning feed
- H7 Contacting feed
- D7 Min. probe length
- D8 Max. probe length
- D20 Axis definition of the longitudinal axis
- D21 exact position of the axis as defined under D20
- D22 Axis definition of the 1st axis in the plane
- D23 Position as defined under D22
- D24 Axis definition of the 2nd axis in the plane
- D25 Position as defined under D24

Result parameters

The following measured results are committed to the declarations memory:

- H33 Qualified probe length
- D21 If an entry was made for P4, D21 is updated
- D23 If an entry was made for P2, D23 is updated
- D25 If an entry was made for P3, D25 is updated

Example

CPL call: N100G22P999999912[2]

declarations memory	H4	Z	10.000	
-	D8	Х	160.000	
	D20	Х	-3.000	
	D21	Х	-780.000	
	D22	Х	1.000	
	D23	Х	250.000	
	D24	Х	2.000	
	D25	Х	-290.000	

Procedure under this CPL call:

- 1. Setting the 3rd axis to fixed machine position –510 mm (–780 mm + 160 mm + 10 mm)
- Setting the 1st axis to position 250 mm and the second axis to position -290 mm
- 3. Approaching the reference position
- 4. Resetting the 3rd axis to position -510 mm

Measuring a bore

This cycle serves to determine the diameter and position of a bore. 3 points set at 120° angles are measured.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Geometry

Prerequisites:

- The probe must have been qualified with P999999921.
- The programming plane in which the bore to be measured is located must be active (G17, G18, G19, or G20).
- Unless P7 and P8 have been defined, the probe must be positioned so that the center point of the spindle is in line with the setpoint center of the bore.

Procedure:

- 1. Positioning the spindle for the 1st approach
- 2. Positioning in front of the 1st point to be taken (clearance as defined under H4)
- 3. Setting the longitudinal axis in the bore
- 4. Contacting the 1st point to be taken at the angle as defined for P4
- 5. Positioning the spindle for the 2nd approach
- 6. Positioning in front of the 2nd point to be taken
- 7. Contacting the 2nd point to be taken at the angle as defined for P5 or P4 + 120 $^\circ$
- 8. Positioning the spindle for the 3rd approach
- 9. Positioning in front of the 3rd point to be taken
- 10.Contacting the 3rd point to be taken at the angle as defined for P6 or P4 + 240 $^\circ$
- 11. Resetting the longitudinal axis to home position
- 12.Calculation of the result parameters

Input parameters			
	P1 Measuring posi gram datum.		tion of the bore in the longitudinal axis relative to pro-
	P2 Set diameter of Unless the diam be entered for F		the bore. Theter is to be calculated by the program, a value must 2.
	P3	Selection of pro matically.)	be 1 or 2 (If no entry is made, probe 1 is selected auto-
	P4 Angle relative to the principal axis for the 1st approach. If no entry is made, the approach direction must be defined under of the declarations memory.		o the principal axis for the 1st approach. de, the approach direction must be defined under D38 ons memory.
	P5	Angle relative to If no entry is ma	o the principal axis for the 2nd approach. ade, the approach is made at an angle of P4 + 120° .
	 P6 Angle relative to the principal axis for the 3rd approach. If no entry is made, the approach is made at an angle of P4 + 240°. 		
	P7 Center point of the bore or circle segment to be measured in the princi- pal axis. If no entry is made, the probe must be aligned with the center point of the bore prior to calling up the measuring cycle.		
	P8	Center point of to ondary axis. If r center point of t	the bore or circle segment to be measured in the sec- no entry is made, the probe must be aligned with the the bore prior to calling up the measuring cycle.
Declarations memory data used			
	H1, H	2, H4, H5, H6, H	17, H32, D30, D32, D36, D37, D38
Result parameters			
	H38 –	- #SPOSMP1	Setpoint position of the center of the principal axis
	H41 –	- #SPOSMP2	Setpoint position of the center of the secondary axis
	H44 –	- #SDURCHM	Setpoint diameter of the bore
	H39 –	- #IPOSMP1	Actual position of the center of the principal axis
	H42 –	- #IPOSMP2	Actual position of the center of the secondary axis
	H45 –	- #IDURCHM	Actual diameter of the bore
	H40 –	- #DPOSMP1	Positional deviation in the principal axis (setpoint – actual)
	H43 -	- #DPOSMP2	Positional deviation in the secondary axis (setpoint – actual)
	H46 –	- #DDURCHM	Difference in diameter
	H35 –	- #PNR%	Program number of the measuring cycle The program number must be specified for the sub- sequent evaluation cycle to recognize where the data originated.
	H36 –	- #AX1%	Axis number of the principal axis
	H37 –	- #AX2%	Axis number of the secondary axis
Example			

CPL call: N100G22P999999923[-320,50]

BOSCH

Measuring a cylinder

This cycle serves to determine the center point and diameter of a cylinder.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Geometry

Prerequisites:

- The probe must have been qualified with P999999921.
- The programming plane in which the bore to be measured is located must be active (G17, G18, G19, or G20)
- Unless P8 and P9 have been defined, the probe must be positioned so that the center point of the spindle is in line with the setpoint center of the bore.

Procedure:

- 1. Positioning the spindle for the 1st approach
- 2. Positioning in front of the 1st point to be taken (clearance H4)
- 3. Setting the longitudinal axis for contacting
- 4. Contacting the 1st point to be taken (angle P5)
- 5. Positioning the spindle for the 2nd approach
- 6. Withdrawing the longitudinal axis by clearance P3
- 7. Positioning in front of the 2nd point to be taken (clearance H4)
- 8. Setting the longitudinal axis for contacting
- 9. Contacting the 2nd point to be taken (angle P6 or P5 + 120°)
- 10. Positioning the spindle for the 3rd approach
- 11. Withdrawing the longitudinal axis by clearance P3
- 12. Positioning in front of the 3rd point to be taken (clearance H4)
- 13. Setting the longitudinal axis for contacting
- 14.Contacting the 3rd point to be taken (angle P7 or P5 + 240°)
- 15. Resetting the longitudinal axis to home position

Input parameters			
	P1	Measuring posi program datum	ition of the cylinder in the longitudinal axis relative to
	P2	Setpoint diame	ter of the cylinder
	P3	Incremental wit to be taken	hdrawal (incl. sign) before approaching the next point
	P4	Selection of pro matically.)	be 1 or 2 (If no entry is made, probe 1 is selected auto-
	P5	Angle relative to If no entry is ma in the declaration	o the principal axis for 1st approach. Ide, the approach direction must be defined under D39 ons memory.
	P6	Angle relative to If no entry is ma	o the principal axis for 2nd approach. ade, the approach is made at an angle of P5 + 120 $^{\circ}$.
	P7	Angle relative to If no entry is ma	o the principle axis for 3rd approach. ade, the approach is made at an angle of P5 + 240 $^{\circ}$.
	P8	Center point of t pal axis. If no er point of the bor	the bore or circle segment to be measured in the princi- ntry is made, the probe must be aligned with the center re prior to calling up the measuring cycle.
	P9	Center point of ondary axis. If center point of	the bore or circle segment to be measured in the sec- no entry is made, the probe must be aligned with the the bore prior to calling up the measuring cycle.
Declarations memory data used	H1, H	2, H4, H5, H6, F	47, H32, D30, D32, D36, D37, D39
Result narameters	ŗ		
	H38 –	- #SPOSMP1	Setpoint position of the center of the principal axis
	H41 –	- #SPOSMP2	Setpoint position of the center of the secondary axis
	H44 –	- #SDURCHM	Setpoint diameter of the cylinder
	H39 –	- #IPOSMP1	Actual position of the center of the principal axis
	H42 –	- #IPOSMP2	Actual position of the center of the secondary axis
	H45 –	- #IDURCHM	Actual diameter of the cylinder
	H40 –	- #DPOSMP1	Positional deviation in the principal axis (setpoint – actual)
	H43 -	- #DPOSMP2	Positional deviation in the secondary axis (setpoint – actual)
	H46 -	- #DDURCHM	Difference in diameter
	H35 -	- #PNR%	Program number of the measuring cycle. The program number must be specified for the sub- sequent evaluation cycle to recognize where the data originated.
	H36 -	- #AX1%	Axis number of the principal axis
	H37 –	- #AX2%	Axis number of the secondary axis
Example	CPL	call: N100G22	2P999999924[-400,80,-30,,60]

BOSCH

Measuring a slot

This cycle serves to determine the length and width of a slot.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Geometry

Prerequisites:

- The probe must have been calibrated with P999999921.
- The programming plane in which the slot to be measured is located must be active (G17, G18, G19, or G20)
- The probe must be positioned so that the center point of the spindle is aligned with the setpoint center of the slot.

	Procedure:			
	1. Positioning the spindle			
	2. Setting the longitudinal axis in the slot			
	3. Contacting the slot (angle P5)			
	4. Ro	tating the spindl	le by 180°	
	5. Co	intacting the slot	$(angle P5 + 180^{\circ})$	
Input parameters	D1	Measuring posi	tion of the slot in the longitudinal axis relative to pro-	
		gram datum.		
	P2 Setpoint width of the slot. Unless the slot width is to be determined, it must be specified.			
	P3 Axis number of the measuring axis.			
	P4	Selection of prol matically.)	be 1 or 2 (If no entry is made, probe 1 is selected auto-	
	P5 Angle relative to the measuring axis. P5 is the contacting angle, not the angle of the slot position. If no entry is made for P5, the angle is set to 0 automatically.			
Declarations memory data used				
-	H1, H	2, H4, H5, H6, H	17, H32, D30, D32, D36, D37	
Result parameters	H38 –	+#SPOSMP1	Setpoint position of the center of the slot in the principal axis	
	H41 –	#SPOSMP2	Setpoint position of the center of the slot in the secon- dary axis	
	H39 –	+#IPOSMP1	Actual position of the center of the slot in the principal axis	
	H42 –	#IPOSMP2	Actual position of the center of the slot in the secondary axis	
	H40 –	#DPOSMP1	Positional deviation of the slot (setpoint – actual) in the principal axis	
	H43 –	#DPOSMP2	Positional deviation of the slot (setpoint – actual) in the secondary axis	
	H44 –	#SBREITE	Setpoint width of the slot	
	H45 –	#IBREITE	Actual width of the slot	
	H46 –	#DBREITE	Difference in slot width	
	H35 –	#PNR%	Program number of the measuring cycle	
	H36 –	- #AX1%	Axis number of the principal axis	
	H37 –	- #AX2%	Axis number of the secondary axis	
Example	CPL o	all: N100G22	P999999925[-220.5,120.475,2]	

Measuring a key

This cycle serves to determine the width and length of a paraxial key.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Prerequisites:

- The probe must have been calibrated with P999999921.
- The programming plane in which the key to be measured is located must be active (G17, G18, G19, or G20).
- The probe must be positioned so that the center point of the spindle is in line with the setpoint center of the key.

Procedure:

- 1. Positioning the spindle
- 2. Setting the principal and the secondary axes in front of the point to be taken

	 Se Cc Rc Rc Wi Se tak Se Se Cc 10.Se 11.Se 	etting the longitud ontacting the side otating the spindl thdrawing the lo otting the principa cen ontacting the longitud ontacting the side otting the longitud otting the principa	dinal axis e face (angle P6 + 180°) le by 180° ngitudinal axis by clearance P4 I and the secondary axes in front of the next point to be dinal axis e face (angle P6) dinal axis to home position al and the secondary axes to home position
Input parameters	P1	Measuring posi program datum	tion of the key in the longitudinal axis relative to the
	P2	Setpoint width o	of the key
	P3	Axis number of	the measuring axis
	P4	Incremental par 2nd point to be	th of withdrawal (incl. sign) before approaching the taken
	P5	Selection of pro matically)	be 1 or 2 (If no entry is made, probe 1 is selected auto-
	P6	Angle relative to the position of the automatically.	o the measuring axis. P6 is the angle of approach, not he key. If no entry is made for P6, the angle is set to 0
Declarations memory data used	H1, H	2, H4, H5, H6, H	17, H32, D30, D32, D36, D37
Result parameters	H38 –	- #SPOSMP1	Setpoint position of the center of the key in the principal axis
	H41 –	- #SPOSMP2	Setpoint position of the center of the key in the secondary axis
	H39 –	- #IPOSMP1	Actual position of the center of the key in the principal axis
	H42 –	- #IPOSMP2	Actual position of the center of the key in the secondary axis
	H40 –	- #DPOSMP1	Positional deviation of the key (setpoint – actual) in the principal axis
	H43 –	#DPOSMP2	Positional deviation of the key (setpoint – actual) in the secondary axis
	H44 –	- #SBREITE	Setpoint width of the key
	H45 –	- #IBREITE	Actual width of the key
	H46 –	- #DBREITE	Difference in key width
	H35 –	- #PNR%	Program number of the measuring cycle
	H36 –	- #AX1%	Axis number of the principal axis
	H37 –	- #AX2%	Axis number of the secondary axis
Example	CPL o	all: N100G22	P999999926[200,35,1,–20]

Geometry

Single-point measurement / multi-point measurement

This cycle serve to determine the exact position of a surface. Measuring can be done either in the longitudinal axis or in the plane. Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle.

Prerequisites:

- The probe must have been qualified with program P999999921 or P999999922.
- For measuring in the longitudinal axis, the axes in the plane must be set so as to permit direct measurement of the 1st point.

Procedure 1: Measuring in the plane

- 1. Positioning the spindle
- 2. Setting the longitudinal axis (D30) if P3 has been defined
- 3. Positioning the principal and the secondary axes in front of the point to be taken (clearance H4)
- 4. Contacting the point to be taken

- 5.–7. Contacting the other points if a value > 1 has been set for P7
- 8. Resetting the longitudinal axis (D30) to home position

- 1. Positioning the longitudinal axis in front of the point to be taken
- 2. Measuring in the longitudinal axis
- 3.–4. Further measuring in the longitudinal axis if a value >1 has been set for P7
- 5. Resetting the longitudinal axis to home position

Input parameters

P1 Setpoint position Procedure 1: paraxial – setpoint position of the measuring axis non-paraxial – setpoint position of the axis as defined under P2 Procedure 2:

Setpoint position of the longitudinal axis

- P2 Axis number of the measuring axis. For non-paraxial measurement in the plane, the principal or the secondary axis can be defined here. The angle defined for P6 is then relative to the axis selected
- P3 Position of the longitudinal axis for measuring in the plane (No entry \rightarrow The longitudinal axis is not moved)

	P4	Selection of pro matically)	be 1 or 2	(If no entry is made, probe 1 is selected auto-
	P5	Setpoint positio An entry is requ	n of the uired only	2nd axis in the active plane. / for non-paraxial measurement in the plane
	P6	Angle for non-p Procedure 1: paraxial non-paraxial Procedure 2:	araxial n – –	neasurement no entry required angle of the surface relative to the axis as defined for P2
		Angle in the pla	ine relati	ve to the axis as defined for P2
	P7	Number of mea	suremer	nts (No entry = 1 point will be taken)
	P8	Space between	the poir	nts taken (0 is also permissible)
Declarations memory data used	Procedure 1: H1, H2, H4, H5, H6, H7, H32, D11, D36, D37			
	Proce	edure 2: H1, H2	2, H4, H5	5, H6, H7, H33, D20
Result parameters				
	H38 -	- #SPOS1	Arithme point po	tic mean of the principal/measuring axis set- sition
	H41 –	- #SPOS2	Arithme tion	tic mean of the secondary axis setpoint posi-
	H39 -	- #IPOS1	Arithme tual pos	tic mean of the principal/measuring axis ac- ition
	H42 -	- #IPOS2	Arithme tion	tic mean of the secondary axis actual posi-
	H40 –	- #DPOS1	Arithme ation	tic mean of the principal axis positional devi-
	H43 -	- #DPOS2	Arithme deviatio	tic mean of the secondary axis positional n
	H36 -	- #AX1%	Axis nu	mber of the measuring axis (P2)
	H44 -	- #AX2%	Axis nu	mber of the secondary axis
	H45 -	- #WI	Approa	ch angle (as defined under P6)
	H46 -	- #DPOS	Position ing axis	al deviation (setpoint – actual) in the measur- or in the plane
	H37 -	- #RI	Approad For mea to 1	ch direction (1 = positive, -1 = negative) asuring in the plane, the value for #RI is set
	H35 -	- #PNR%	Program	n number of the measuring cycle
Example	CPL	call: N100G22I	P999999	927[–352.75,3]

Two-point measurement

This cycle serves to determine the angular deviation of 2 paraxial points.

Upon completion of this cycle, the measured results are available as global variables as well as in the declarations memory for further processing. The measured results are evaluated by separate programs, which can be called up after completion of this measuring cycle. The measured results can be used, e.g., for changing the position of a rotary axis so as to eliminate any angular deviation.

Geometry

Prerequisites:

• The probe must have been qualified with program P999999921 or P999999922.

Procedure:

- 1. Positioning the spindle unless the measuring cycle is run in the longitudinal axis.
- 2. Setting the longitudinal axis to contacting position unless the measuring cycle is run in the longitudinal axis.
- 3. Contacting the 1st point to be taken
- 4. Setting to the 2nd contacting position
- 5. Contacting the 2nd point to be taken
- 6. Setting the longitudinal axis to home position

Input parameters

- P1 Axis number of the measuring axis
- P2 Setpoint position of the 1st point taken
- P3 Setpoint position of the 2nd point taken
- P4 Axis number of the shifting axis
- P5 Space between the points taken in the shifting axis (incl. sign)
- P6 Position of the longitudinal axis for contacting in the plane
- P7 Selection of probe 1 or 2 (If no entry is made, probe 1 is selected automatically)

Declarations memory data used

H1, H2, H4, H5, H6, H7, H32, H33, D11, D20, D36, D37

Example

Result parameters

H38 – #SPOS1	Setpoint position of the 1st point taken			
H41 – #SPOS2	Setpoint position of the 2nd point taken			
H39 – #IPOS1	Actual position of the 1st point taken			
H42 – #IPOS2	Actual position of the 2nd point taken			
H40 – #DPOS1	Positional deviation of the 1st point taken (setpoint – actual)			
H43 – #DPOS2	Positional deviation of the 2nd point taken (setpoint – actual)			
H45 – #WI	Angular deviation of the 2nd point taken			
	$\#WI = ATN \qquad \frac{\#DPOS2 - \#DPOS1}{P5}$			
#RI	Contacting direction (pos. = 1, neg. = -1)			
H36 – #AX1%	Axis number of the measuring axis			
H37 – #AX3%	Axis number of the shifting axis			
H35 – #PNR%	Program number of the measuring cycle			

CPL call: N100G22P99999928[3,150,190,-135]

Your notes:

Description of the declarations memory 5

H1 Number of the interface input for "Block Search" and for operating mode "Test without Movement". If a measuring cycle is run in the operating mode "Block Search" or "Test without Movement", the entire measuring cycle is skipped. In the operating modes "Block Search" or "Test without Movement", the PLC program must send a HIGH signal to the NC input defined here.

H1 Z 250.000 represents interface input bit 250.

- Number of the interface output which signals to the PLC that a trigger-H2 ing operation of the probe is expected. If the PLC is additionally connected to the probe trigger signal output, this signal output can be used as a safety circuit to protect the probe. If the probe is deflected (leading edge) although there is no H2 "HIGH" signal, the connected PLC can trip an "EMERGENCY OFF".
- H3 Not assigned.
- H4 Clearance at which G75 is activated. Points to be taken in a measuring cycle are first approached at a high feed rate. At the clearance defined here, G75 is activated. The actual clearance is compensated for the probe radius. H4 Z 025.000 stands for a clearance of 25 mm from the point to be taken where G75 is activated.
- H5 Approach overtravel for contacting.

When a point to be taken is approached, the respective axis moves on all the way defined here unless the probe is deflected. Subsequently, the measuring cycle is stopped and an error message is displayed. H5 Z 010.00 means that the measuring axis/axes will overtravel the point to be taken by 10 mm unless the probe is deflected earlier.

- H6 Positioning feed. For axis positioning, the axes are moved at the feed rate defined here. H6 Z 5000.000 means that an axis is moved at a feed rate of 5,000 mm/min.
- H7 Contacting feed. This is the feed rate at which axes are moved when a probe deflection is expected. A practical feed rate would be 500 mm/min.
- H8 Maximum positive compensation. If the dimensional deviation is within the maximum range of positive compensation, it is transferred to the respective table. However, if the dimensional deviation exceeds the compensation range, the data is not transferred to the table and an error message is displayed. Maximum positive compensation takes effect only if no zero offset range is entered when the dimensional deviation transfer function is called up.

H8 Z 3.500 means that dimensional deviations up to a maximum of 3.5 mm will be compensated for.

H9 Maximum negative compensation. Same as H8, but for negative dimensional deviations. H9 Z-2.500 means that dimensional deviations up to a maximum of 2.5 mm will be compensated for.

	H10	Zero compensation range. If the dimensional deviation is within the zero compensation range, no data transfer to the respective table is effected. This zero compensation range takes effect only if no zero compensa- tion range is entered when the dimensional deviation transfer function is called up. H10 Z 0.005 means that dimensional deviations of ± 5 increments will not be compensated for.
Tool gauging		
	H11	Selection of the longitudinal axis. For tool gauging, the axis number of the longitudinal axis must be stored here. The sign specifies the direction of approach. H11 Z–003.000 defines that the 3rd axis (usually the Z-axis) will be used as the longitudinal axis. The approach will be made in negative direction.
	H12	Position in the longitudinal axis of the probe permanently installed on the machine. Exact qualification of this position is not required because this is done in the qualifying cycle.
	H13	Selection of a positioning axis for contacting in the longitudinal axis. To permit contacting in the longitudinal axis, an additional axis is de- fined here, which must first be moved to a fixed machine position. H13 Z 1.000 means that the 1st axis (usually the X-axis) is positioned before the measuring cycle is run. H13 Z0 means that no axis positioning is required.
	H14	Fixed machine position of the axis as defined under H13. If this position lies beyond the input format of \pm 3.3, the input range in the machine parameter program must be changed.
	H15	Selection of an additional positioning axis for contacting in the longitu- dinal axis (same as H13).
	H16	Fixed machine position of the axis as defined under H15 (see H14).
	H17	Selection of the radial axis. Similar to H11, except that here the axis is defined for gauging the tool radius.
	H18	Position in the radial axis of the probe permanently installed on the machine.
	H19	Selection of the 1st positioning axis for radius gauging (same as H13, but for radius gauging).
	H20	Fixed machine position of the axis as defined under H19.
	H21	Selection of the 2nd positioning axis for radius gauging (similar to H19).
	H22	Fixed machine position of the axis as defined under H21.

Workpiece measuring

- H32 Probe length for contacting in the plane
- H33 Qualified probe length for contacting in the longitudinal axis
- D1 Positional deviation of the probe in the plane (1st axis)
- D2 Positional deviation of the probe in the plane (2nd axis)
- D3 Lobing with positive approach direction in the 1st axis
- D4 Lobing with negative approach direction in the 1st axis
- D5 Lobing with positive approach direction in the 2nd axis
- D6 Lobing with negative approach direction in the 2nd axis
- D7 Minimum probe length
- D8 Maximum probe length
- D9 Not assigned
- D10 Not assigned

Probe qualification using a reference bore

- D11 Definition of the longitudinal axis
- D12 Position in the longitudinal axis (D11) to enable bore contacting
- D13 Definition of the 1st axis for contacting inside the bore
- D14 Exact center point position of the reference bore in the 1st axis (D13)
- D15 Definition of the 2nd axis for contacting inside the bore
- D16 Exact center point position of the reference bore in the 2nd axis (D15)
- D17 Exact diameter of the reference bore
- D18 Not assigned
- D19 Not assigned

Probe qualification in the longitudinal axis

- D20 Definition of the longitudinal axis (see H11)
- D21 Exact position of the reference surface for contacting in the longitudinal axis
- D22 Definition of the 1st positioning axis for contacting in the longitudinal axis
- D23 Positioning the axis as defined under D22
- D24 Definition of the 2nd positioning axis for contacting in the longitudinal axis
- D25 Position relative to the axis as defined under D24

Probe qualification using a reference surface – probe with variable spindle positioning

- D30 Definition of the longitudinal axis. If D30 is defined with a negative sign, this axis will not be moved when qualifying program P999999921 is run.
- D31 Position of the longitudinal axis (D30) to enable contacting the reference surface in the active plane.
- D32 Definition of the measuring axis, including approach direction (e.g., 1 signifies that the 1st axis is moved in positive direction towards the reference surface).
- D33 Exact position in the measuring axis of the reference surface to be contacted.

- D34 Definition of an additional axis to be positioned before the reference surface can be contacted.
- D35 Position of D34
- D36 Probe lobing determined for contacting in the plane. It is assumed that the S0 spindle position is set in contacting direction.
- D37 Definition of direction of spindle rotation. The S0 spindle position must always point in contacting direction for measuring.

Example:

With G17 as the active plane, the 1st axis is the principal axis (X) and the 2nd axis is the secondary axis (Y).

When approaching in +X direction, the spindle is set at zero degrees. For the probe to be deflected in the same direction in the Y-axis, the spindle must be rotated through +90 degrees or -90 degrees. Depending on the direction of rotation, the value to be stored under D37 must be +1 or -1, respectively.

- D38 Measuring a bore with program P999999923. For measuring a bore, the approach direction for the 1st point to be taken can be defined relative to the principal axis.
- D39 Measuring a cylinder with program P999999924 Angle setting as described for D38.

6 Required storage space

Tool gauging		Storage space in bytes
P999999901	Probe qualification with a standard tool	3768
P999999902	Tool length gauging	2185
P999999903	Tool radius gauging	2014

Workpiece meas spindle positior	Storage space in bytes	
P999999911	Probe qualification in a reference bore	3566
P999999912	Probe qualification in a longitudinal axis	2408
P999999913	Measuring a bore	3874
P999999914	Measuring a cylinder	3865
P999999915	Measuring a slot	2958
P999999916	Measuring a key	2807
P999999917	Single-point measuring	3659
P999999918	Two-point measuring	3415

Workpiece mea spindle position	Storage space in bytes	
P999999921	Probe qualification with a reference surface	2589
P999999922	Probe qualification in the longitudinal axis	2481
P999999923	Measuring a bore (three-point measuring)	5793
P999999924	Measuring a cylinder (three-point measuring)	5655
P999999925	Measuring a slot	3817
P999999926	Measuring a key	3833
P999999927	Single-point measuring	5646
P999999928	Two-point measuring	3911

Your notes:

Bosch-Automationstechnik

Robert Bosch GmbH Geschäftsbereich Automationstechnik Industriehydraulik Postfach 30 02 40 D-70442 Stuttgart Telefax (07 11) 8 11-18 57

Robert Bosch GmbH Geschäftsbereich Automationstechnik Fahrzeughydraulik Postfach 30 02 40 D-70442 Stuttgart Telefax (07 11) 8 11-17 98

Robert Bosch GmbH Geschäftsbereich Automationstechnik Pneumatik Postfach 30 02 40 D-70442 Stuttgart Telefax (07 11) 8 11-89 17 Robert Bosch GmbH Geschäftsbereich Automationstechnik Montagetechnik Postfach 30 02 07 D-70442 Stuttgart Telefax (07 11) 8 11-77 77

Robert Bosch GmbH Geschäftsbereich Automationstechnik Antriebs- und Steuerungstechnik Postfach 11 62 D-64701 Erbach Telefax (0 60 62) 78-4 28

Robert Bosch GmbH Geschäftsbereich Automationstechnik Schraub- und Einpreßsysteme Postfach 11 61 D-71534 Murrhardt Telefax (0 71 92) 22-1 81

Robert Bosch GmbH Geschäftsbereich Automationstechnik Entgrattechnik Postfach 30 02 07 D-70442 Stuttgart Telefax (07 11) 8 11-34 75 Robert Bosch GmbH Geschäftsbereich Automationstechnik Schulung AT/VSZ Berliner Straße 25 D-64711 Erbach Telefax (0 60 62) 78-8 33

Technische Änderungen vorbehalten

Ihr Ansprechpartner

Robert Bosch GmbH Geschäftsbereich Automationstechnik Antriebs- und Steuerungstechnik Postfach 11 62 D-64701 Erbach Telefax (0 60 62) 78-4 28

1070 073 789-101 (98.09) GB · HB NC· AT/VMS1 · Printed in Germany